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Objective: Timely initiation of combination antiretroviral therapy (ART) limits latent
HIV reservoir size and should also limit reservoir genetic complexity. However, the
relationship between these two factors remains unclear, particularly among HIV-
infected youth.

Design: Retrospective analysis of replication-competent latent HIV clones serially
isolated by limiting-dilution culture from resting CD4þ T-cell reservoirs from ART-
suppressed, young adult participants of a historic phase I therapeutic vaccine trial
(PACTG/IMPAACT-P1059).

Methods: Replication-competent latent HIV clones isolated from resting CD4þ T cells
of four perinatally and 10 nonperinatally infected young adults (average 22 versus 6
years uncontrolled infection, respectively) were sequenced in Pol and Nef. Within-host
HIV sequence datasets were characterized with respect to their genetic diversity and
inferred immune escape mutation burden.

Results: Although participants were comparable in terms of sociodemographic and
HIV sampling characteristics (e.g. on average, a mean 17 Pol sequences were recovered
at five timepoints over up to 70 weeks) and the length of ART suppression at study entry
(average 3 years), replication-competent HIV reservoir size, genetic diversity, immune
escape mutation burden and variant complexity were significantly higher among the
perinatally infected participants who experienced longer durations of uncontrolled
viremia. Nevertheless, viral sequences inferred to retain susceptibility to host cellular
immune responses were detected in all participants, irrespective of uncontrolled
viremia duration.

Conclusion: HIV elimination in late-suppressed youth may be doubly challenged by
larger and more genetically complex reservoirs. Strategies that integrate host and viral
genetic complexity to achieve HIV remission or cure may merit consideration in such
cases. Copyright � 2018 Wolters Kluwer Health, Inc. All rights reserved.
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Introduction

Genetic diversity [1–9] and immune escape [10] within the
latent HIV reservoir form barriers to cure. Given that
reservoir establishment begins shortly after infection and
continues as long as viral replication remains uncontrolled
[11–13], timely viremia suppression with combination
antiretroviral therapy (ART) should, in theory, limit
reservoir complexity. The observation that early ART
limits HIV reservoir size in both adult [14–16] and pediatric
[17–20] infection supports this; as do the observations that
proviral landscapes in elite controllers and early-treated
individuals tend to be more homogeneous than viremic
controllers and individuals who initiated ART in chronic
infection, respectively [5,21,22]. However, the effect of
uncontrolled viremia duration on reservoir diversity in
individuals who did not initiate early suppressive ART
remains unclear. This is particularly relevant to persons
infected in the decade prior to the availability of
combination ART, including perinatally infected individu-
als who survived to young adulthood.

Immune escape within the HIV reservoir also remains
incompletely characterized in this population. Although the
majority of latent HIV genomes in adults treated in chronic
infection harbored at least one major human leukocyte
antigen (HLA) class I-restricted cytotoxic T-lymphocyte
(CTL) escape mutation in Gag, unmutated epitopes – that
were subsequently used as targets for reservoir elimination –
were also present in all individuals [10]. If the latent reservoir
recapitulates within-host HIVevolution [23–25] then CTL
epitopes that underwent escape in vivo should be ‘preserved’
in various states of adaptation within it; indeed, a scenario
where susceptible and adapted forms of the same epitope co-
exist in the replication-competent HIV reservoir could
create both challenges and opportunities for cure immu-
notherapeutics.

Latent HIV reservoir sampling also remains a challenge.
Given the high (>90%) burden of defective proviruses
[1,26], direct HIV DNA sequencing may not fully
represent genetic diversity within the replication-com-
petent minority that is critical to eradicate [27].
Furthermore, given the propensity of latently HIV-
infected cells to undergo clonal expansions [4,7,28–30]
that can sometimes be short-lived [31], cross-sectional
studies may underestimate overall reservoir diversity if
such an expansion has recently occurred.

To address these gaps, we genetically characterized
replication-competent latent HIV clones isolated from
resting CD4þ T-cell reservoirs serially sampled over up to
Copyright © 2018 Wolters Kluwer H
70 weeks during suppressive ART, from young adult
participants of a historic phase I therapeutic vaccine trial
(PACTG/IMPAACT-P1059) who differed markedly in
terms of their uncontrolled HIV infection duration
(because of perinatal acquisition of HIV in the decade
before combination ART was available, versus risk
behavior later in life) [32,33]. Although the vaccine
was well tolerated [32] and induced a modest transient
reduction in the reservoir [33], reservoir size at trial
completion did not significantly differ from baseline. This
rare dataset thus offers a unique opportunity to assess
replication-competent latent HIV genetic complexity,
and investigate its relationship with uncontrolled infec-
tion duration, in this key population.
Methods

This study was approved by the Johns Hopkins University
School of Medicine and Simon Fraser University
Institutional Review Boards. All participants provided
written informed consent. This study included 14 of the
20 participants of PACTG/IMPAACT-P1059 for whom
replication-competent latent HIV isolates were serially
obtained; all participants had plasma HIV RNA less than
50 copies/ml on ART at trial initiation and maintained
viremia suppression throughout follow-up. As previously
reported [33], infectious HIV frequencies in resting
CD4þ T cells were quantified in real time at trial screen
and entry (week 0), and up to seven visits thereafter
(weeks 2, 4, 6, 24, 26, 40 and 72) by end point dilution
culture [21,33]. Resting CD4þ T cells were enriched
from fresh blood, activated to promote virus expression,
after which released virus was expanded in CD4þ T
lymphoblasts from HIV-negative donors to quantify
original infected cell frequencies in infectious units per
million (IUPM) [34,35]. Nef and partial Pol (HXB2
genomic nucleotides 2253–3254) were amplified from
p24-positive culture supernatants by nested RT-PCR
using HIV-specific primers, and Sanger sequenced [21].
Sequences were aligned using HIValign [36] (options:
MAFFT [37], codon alignment) and edited in AliView
v1.18 [38]. Maximum likelihood phylogenies were
reconstructed using RAxML v8.2.10 [39] with 100
bootstraps under a generalized time reversible model and
visualized using Figtree (http://tree.bio.ed.ac.uk/soft-
ware/figtree/). Patristic (tip-to-tip phylogenetic) dis-
tances were extracted from newick treefiles using Patristic
[40]. Pairwise genetic distances were additionally
calculated using the dist.dna function in the APE package
in R [41]. HLA-associated polymorphisms defined at
allele-level resolution in HIV subtype B were published in
ealth, Inc. All rights reserved.
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Fig. 1. Genetic diversity within the replication-competent latent HIV reservoir increases with untreated infection duration. (a)
Participant clinical, immunogenetic, and HIV reservoir dataset characteristics. Throughout all figures, perinatally infected
participants (those with longer uncontrolled infection duration) are denoted by asterisks (�). (b) Maximum-likelihood phylogeny
relating within-host HIV Pol sequences, colored by participant. All within-host sequence datasets formed monophyletic clades
with 100% bootstrap support. Scale in expected nucleotide substitutions per site. (c) Same as (b), but for Nef. All within-host
datasets formed monophyletic clades with 100% bootstrap support except those of participants 11 (99%) and 19 (89%).
Differences in overall topologies between Pol and Nef trees are attributable to low bootstrap support for the deeper branches



214 AIDS 2019, Vol 33 No 2
Ref. [42]. HLA-restricted optimal CTL epitopes were
defined using the Los Alamos HIV Molecular Immunol-
ogy Database with recent updates ([43] and C. Brander,
personal communication).
Results

Replication-competent latent HIV sequences were
serially sampled from resting CD4þ T cells collected
from 14 PACTG/IMPAACT-P1059 participants during
suppressive ART (Fig. 1a). Participants were stratified
into those who acquired HIV perinatally (N¼ 4, in
whom mean time between infection and combination
ART initiation, henceforth referred to as estimated
uncontrolled infection duration, was an estimated 22
years) and those who acquired HIV in adolescence
through risk behavior (N¼ 10; mean uncontrolled
infection duration 6 years). Consistent with earlier
ART limiting reservoir size [14–20], the former had
significantly larger reservoirs than the latter (mean
baseline IUPM 1.26 versus 0.39, P¼ 0.014); however,
the groups did not otherwise differ in terms of age, sex or
duration of viremia control on ARTat study entry (overall
median 3.3; range 0.6–6.4 years) [33].

To maximize the likelihood that recovered HIV isolates
originated from the latent reservoir, analysis was limited
to participants who maintained pVL less than 50 copies/
ml (a single viremia ‘blip’ to 436 copies/ml in participant
2 was excepted). Median pVL during follow-up, assessed
using an ultrasensitive assay, was less than 6.5 copies/ml
for both groups (Fig. 1a). Given that the vaccine did not
ultimately reduce reservoir size [33], and that the latent
HIV reservoir is highly stable [5,11], all HIV sequences
recovered from a given participant were pooled together
regardless of sampling date to estimate within-host
replication-competent reservoir diversity. In total, 204
Pol and 188 Nef sequences were isolated at an average of
five time points over an average 27 weeks (range 4–70),
yielding an overall average 17 Pol and 15 Nef sequences
per participant. Groups did not differ in terms of
sampling, follow-up duration or percent unique
sequences (Fig. 1a), though note only Nef sequences
were obtained for participants 6 and 19, and only Pol for
participant 17 (Fig. 1b and c). Overall, 184 (90.1%)
Pol and 179 (95.2%) Nef sequences contained no
nucleotide mixtures, consistent with clonal HIV out-
growth from endpoint-diluted cell cultures in the
majority of wells. Each participant’s HIV sequences
 Copyright © 2018 Wolters Kluwer H

(i.e. those that define evolutionary relationships between participa
participants 2 and 4. No downstream analyses, however, relied o
patristic (tip-to-tip phylogenetic) distances in reservoir Pol sequenc
(d), but for Nef. (f) Relationship between size and diversity (Nef) of
by Spearman’s correlation.
formed monophyletic clades with a median 100%
bootstrap support (Fig. 1b and c).

Identical Pol and/or Nef sequences were recovered in 10
of 14 participants (3 of 4 perinatally infected and 7 of 10
nonperinatally infected, P¼ 1.0), consistent with clonal
CD4þ T-cell expansion as a mechanism of latent HIV
reservoir maintenance in youth, regardless of infection
mode. Notably, in 9 of these 10 participants, identical
sequences were recovered at multiple timepoints up to 70
weeks apart (including participant 4 where the same
sequence was recovered at weeks 2, 4, 6 and 72; the sole
exception was participant 5, in whom identical sequences
were recovered at a single timepoint only). This indicates
that clonal descendants of CD4þ T cells harboring
replication-competent latent HIV tend to persist long-
term in infected youth [28].

Replication-competent HIV reservoir diversity, mea-
sured in terms of average within-host patristic (tip-to-tip)
phylogenetic distances, was significantly higher in
perinatally compared with nonperinatally infected
participants for both Pol (mean 0.21 versus 0.004
nucleotide substitutions/site, P< 0.0001; Fig. 1d) and
Nef (mean 0.023 versus 0.012 nucleotide substitutions/
site, P¼ 0.033, Fig. 1e). Replication-competent HIV
reservoir diversity was also significantly higher in
perinatally infected compared with nonperinatally
infected participants for both Pol and Nef when measured
in terms of mean pairwise genetic distance (P¼ 0.0003
for Pol, P¼ 0.014 for Nef; not shown). Reservoir size
correlated strongly with Nef (Spearman’s R¼ 0.75;
P¼ 0.0032; Fig. 1f) and to a lesser extent Pol
(R¼ 0.47; P¼ 0.1) within-host average patristic dis-
tances, indicating that larger reservoirs tend to be more
genetically diverse (rather than more clonally expanded).

We investigated immune escape two ways. First, we
estimated total escape burden by identifying all HIV
codons under selection by one or more host HLA alleles
and classifying each autologous HIV residue as adapted
(inferred escaped) or susceptible, based on published
definitions [42] (example in Fig. 2a). For each sequence,
we calculated the percent HLA-associated sites exhibiting
an adapted (or possibly adapted) form, and computed the
median for each participant’s datasets (e.g. the Pol dataset
in Fig. 2a is 44% adapted to host HLA). Second, we
estimated within-host escape complexity by quantifying
the proportion of optimally described HLA-restricted
CTL epitopes exhibiting within-host amino acid varia-
tion [e.g. 6/8 (75%) for the Pol dataset in Fig. 2a]. In Pol,
ealth, Inc. All rights reserved.

nts); all were less than 70% except the subclade constituting
n intra-participant genetic distances. (d) Average within-host
es; P value calculated using Student’s t test. (e) Same as panel
the within-host replication-competent HIV reservoir, assessed
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Fig. 2. Immune escape burden within the replication-competent latent HIV reservoir is complex, and generally increases with
untreated infection duration. (a) Pol sequence alignment for participant 13 (perinatally infected). The reference sequence (top)
was arbitrarily chosen from among those recovered from CD4þ T cells sampled at the earliest timepoint. Sites of HLA-driven adaptation
in Pol (defined in [42]) are highlighted, with red, orange and blue denoting adapted (inferred escaped), possibly adapted and susceptible
forms, respectively. Optimally described CTL epitopes restricted by host HLA alleles are shaded in grey. The proportion of HLA-
associated sites exhibitingadapted or possiblyadapted forms is reportedafter each sequence.Note the threecodons (257,264 and277 in
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the percentage of HLA-adapted sites was overall higher in
perinatally infected compared with nonperinatally
infected participants (mean 48 versus 32%, P¼ 0.043;
Fig. 2b), as was the percentage of optimally described Pol
CTL epitopes exhibiting within-host amino acid varia-
tion (median 75 versus 0%, P¼ 0.032; Fig. 2c). Similar
trends were observed for Nef (Fig. 2d and e).

Notably, however, despite uncontrolled infection dura-
tions of greater than 20 years and overall high adaptation
levels in some participants, no reservoir was completely
adapted to host HLA (Fig. 2b and d). Furthermore, on an
individual CTL epitope level, reservoir immune escape
complexity differed widely both within and between
hosts, an observation that can be illustrated by the HLA-
B�07-restricted immunodominant [44] Nef-RM9 epi-
tope (Fig. 2f). Four participants (9, 11, 13, 19) expressed
HLA-B�07, all of whom exhibited high Nef adaptation.
However, whereas participants 13 and 190s reservoirs
were fully escaped in Nef-RM9, �45 and �80% of
participants’ 9 and 110s reservoirs, respectively, harbored
sequences that were predicted to retain susceptibility to
HLA-B�07-restricted CTL. This indicates that key
susceptible epitopes can still be identified even in
otherwise highly escaped reservoirs. Indeed, co-existence
of HLA-susceptible and adapted forms within the same
CTL epitope in an individual’s reservoir occurred
commonly: greater than 60% and greater than 30% of
participants harbored at least one Pol or Nef epitope,
respectively, where this occurred (examples in Fig. 2g).
This further supports the reservoir as an archive of within-
host HIVevolution [23–25] and suggests that autologous
T-cell responses to these epitopes, if effectively re-
stimulated, might still be capable of clearing a portion of
the reservoir.
Discussion

Serial sampling of the replication-competent HIV
reservoir in our young adult cohort supports the notion
that reservoir diversity and escape burden continue to
increase with uncontrolled infection duration, even in
individuals who initiate ART relatively late. Caveats
include the study’s modest size, differences in infection
route (such that we cannot rule out that higher reservoir
complexity is attributable to perinatal transmission rather
 Copyright © 2018 Wolters Kluwer H

this alignment, denoting RT codons 158, 165 and 178), all within HLA-
exist within the reservoir. (b) Average inferred immuneescapeburden in
for each participant), stratified by group. P value calculated using Stude
Pol exhibiting within-host sequence variation, stratified by group. As t
distributed, the P value is calculated using the Mann–Whitney U test
restricted RM9 epitope (Nef codons 71–79) as an example of reservoir
is proportional to within-host amino acid prevalence, with red and blu
other residues are grey). Note that participant 11 was perinatally infecte
CTL epitope can co-exist in the reservoir, even in persons who initiate
HLA-restricted optimal epitopes in Pol and Nef where adapted and s
than uncontrolled infection duration), and that reservoir
sampling occurred during administration of an experi-
mental therapeutic HIV vaccine [33]. Although the
vaccine did not durably reduce reservoir size [33], and we
observed no evidence that the vaccine consistently altered
overall within-host reservoir diversity (comparisons of the
average within-host patristic HIV distances prevaccine
and postvaccine yielded P¼ 0.8 and P¼ 0.6 for Pol and
Nef, respectively; not shown), we cannot rule out the
possibility that the vaccine may have induced very low-
level HIV replication [45] or otherwise perturbed
reservoir sequence composition in some participants.
Confirmation of our observations in additional cohorts is,
therefore, merited. Nevertheless, our findings may have
implications for immmunotherapeutic HIV cure strate-
gies. Although, on one hand, HIV elimination in late-
treated persons may be doubly challenged by larger and
more genetically complex reservoirs, our observation that
predicted HLA-susceptible sites were present in all
reservoirs, even those of persons who did not achieve
sustained virologic suppression until two decades after
infection, supports strategies that integrate host and viral
genetic data to inform HIV cure immunogen selection.
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